Binuclear silver(I) complexes with polydentate phosphine ligands 2-(diphenylphosphino)-6-[3-(2'-pyridyl)pyrazol-1-yl]pyridine and 2-(diphenylphosphino)-6-(pyrazol-1-yl)pyridine

Shan-Ming Kuang,^a Zheng-Zhi Zhang,^{*,b} Qi-Guang Wang^a and Thomas C. W. Mak^{*,a}

^a Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. E-Mail: tcwmak@cuhk.edu.hk

^b Elemento-Organic Chemistry Laboratory, Nankai University, Tianjin, P.R. China

The new polydentate, pyridine-based phosphine ligand 2-(diphenylphosphino)-6-[3-(2'-pyridyl)-pyrazol-1-yl]pyridine (L²) has been synthesized. The reaction of L² with [Ag(MeCN)₄][ClO₄] resulted in the formation of the binuclear silver(1) complex [Ag₂(μ -L²)₂(ClO₄)₂], which is stabilized by significant π - π stacking interactions between its inter-ligand pyridyl fragments. In contrast, the reaction of 2-(diphenylphosphino)-6-(pyrazol-1-yl)pyridine (L¹) with [Ag(MeCN)₄][ClO₄] gave the binuclear complex [Ag₂(μ -L¹)₂(MeCN)₂][ClO₄]₂, which exhibits a weak metal-metal interaction.

Introduction

In our previous work, we have successfully synthesized polymeric silver(I) complexes $\{[Ag_2(MeCN)_2(\mu-L^1)]_n\}[ClO_4]_{2n}$ and $\{[Ag(MeCN)_2(\mu-L^2)]_n\}[ClO_4]_n$ by the self-assembly reaction of polydentate phosphine ligands 3,6-bis(diphenylphosphino)-pyridazine (I) and 2,6-bis(diphenylphosphino)pyridine (II) with $[Ag(MeCN)_4][ClO_4]$.¹ We have also recently reported several binuclear copper(I) complexes with 2-(diphenylphosphino)-6-(pyrazol-1-yl)pyridine (L¹), although the synthesis of this polydentate phosphine ligand was only briefly sketched.²

Here we report our subsequent study on the design of a related ligand, 2-(diphenylphosphino)-6-[3-(2'-pyridyl)pyrazol-1-yl]pyridine (L^2), and its reaction with [Ag(MeCN)₄][ClO₄] in comparison with L^1 , the synthesis of which is now described in detail.

Experimental

General procedure, measurement and materials

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques. The solvents were purified by standard methods. The ¹H and ¹³C-{¹H} NMR spectra were recorded on a Bruker-300 NMR spectrometer using SiMe₄ as the external standard and CDCl₃ as solvent. The ³¹P-{¹H} NMR spectra were recorded on a Bruker-500 NMR spectrometer at 202.45 MHz using 85% H₃PO₄ as the external standard and CDCl₃ as solvent. The compounds [Ag(Me-CN)₄][ClO₄]³ and 3-(2-pyridyl)pyrazole⁴ were prepared from literature procedures.

CAUTION: while none of these perchlorate complexes has proved to be shock sensitive, nevertheless proper care should always be taken.⁵

Preparations

2-Chloro-6-(diphenylphosphino)pyridine. A solution of LiBu" in hexane (1.60 M, 36.0 mL) was added dropwise to a solution of Ph_2PH (9.30 g, 0.05 mol) in tetrahydrofuran (50 mL) at 0 °C. The resulting mixture was added dropwise to a solution of 2,6-dichloropyridine (7.40 g, 0.05 mol) in tetrahydrofuran at

-78 °C, after which the mixture was stirred for 1 h at this temperature and then allowed to warm slowly to room temperature. The solvent was removed in vacuum and water (100 mL) was added. The aqueous phase was extracted with CH₂Cl₂ (3 × 50 mL) and the organic phase dried with anhydrous Na₂SO₄ overnight. Most of the CH₂Cl₂ was removed under vacuum and hexane (100 mL) was added to deposit a colorless solid, which upon recrystallization from CH₂Cl₂–hexane afforded an analytically pure product (yield 9.40 g, 63%). Mp: 82–83 °C. ¹H NMR (CDCl₃): δ 7.49 (d, *J* = 1.2, 1 H, pyridyl-H⁵), 7.38 (m, 10 H, phenyl), 7.20 (m, 1 H, pyridyl-H⁴), 6.95 (d, *J* = 1.5 Hz, 1 H, pyridyl-H³). ³¹P-{¹H} NMR: δ 34.20 (Found: C, 68.50; H, 4.21; N, 4.51. Calc. for C₁₇H₁₃ClNP: C, 65.58; H, 4.40; N, 4.71%).

2-(Diphenylphosphino)-6-[3-(2'-pyridyl)pyrazol-1-yl]pyridine L². A solution of 3-(2-pyridyl)pyrazole (4.43 g, 0.03 mmol) in anhydrous 2-methoxyethyl ether (40 mL) was mixed with 1.17 g (0.03 mol) of potassium and stirred at 70 °C until the metal dissolved. To this solution was added 7.44 g (0.025 mol) of 2-chloro-6-(diphenylphosphino)pyridine in one portion. The resulting mixture was stirred at 110 °C for 7 d. The solvent was removed under reduced pressure and water (100 mL) was added. The aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL) and the organic phase dried with anhydrous Na2SO4 overnight. Most of the CH2Cl2 was removed under vacuum and hexane (100 mL) was added to give a crude product which could be purified by column chromatography using 6:1 hexane-diethyl ether as the eluent. The product was obtained as colorless microcrystals (yield 7.80 g, 64%). ¹H NMR (CDCl₃): δ 8.31 (d, J = 0.7, 1 H, pyridyl-H⁶), 7.80 (d, J = 1.7, 1 H, pyrazolyl-H³), 7.62 (m, 2 H, pyridyl-H³ and pyridyl-H⁵), 7.31-7.39 (m, 13 H, phenyl, pyridyl-H⁴, P-pyridyl-H³ and P-pyridyl- H^{5}), 7.00 (d, J = 1.4, 1 H, pyrazolyl- H^{4}), 6.32 (t, J = 0.5 Hz, 1 H, P-pyridyl-H⁴). ³¹P-{¹H} NMR: δ 10.13 (Found: C, 73.78; H, 4.68; N, 13.72. Calc for C25H19N4P: C, 73.88; H, 4.71; N, 13.79%).

2-(Diphenylphosphino)-6-(pyrazol-1-yl)pyridine L¹. The procedure was similar to that given above, except that 2.04 g (0.03 mol) of pyrazole was used instead of 3-(2-pyridyl)pyrazole. The product was obtained as colorless microcrystals (yield 6.70 g, 81%). ¹H NMR (CDCl₃): δ 8.36 (d, J = 0.7, 1 H, pyrazolyl-H³), 7.87 (m, 1 H, pyrazolyl-H⁵), 7.65 (m, 2 H, pyrazolyl-H⁴ and pyridyl-H⁵), 7.35–7.46 (m, 10 H, phenyl), 7.04 (m, 1 H, pyridyl-H³), 6.36 (t, J = 0.6 Hz, 1 H, pyridyl-H⁴). ³¹P-{¹H} NMR: δ 9.31 (Found: C, 73.02; H, 5.08; N, 12.60. Calc. for C₂₀H₁₆N₃P: C, 72.94; H, 4.90; N, 12.76%).

J. Chem. Soc., Dalton Trans., 1998, Pages 2927–2929 2927

Table 1Selected bond lengths (Å) and angles (°) for complexes 1 and 2

1		2	
Ag(1) - P(1)	2.359(1)	Ag(1)-P(1a)	2.375(2)
Ag(1)-N(3a)	2.395(5)	Ag(1)-N(1)	2.405(6)
Ag(1)–N(4a)	2.395(5)	Ag(1) - N(3)	2.324(5)
Ag(1)–O(3)	2.652(5)	Ag(1) - N(4)	2.412(8)
$Ag(1) \cdots Ag(1a)$	7.630(1)	$Ag(1) \cdots Ag(1a)$	2.964(1)
P(1)–Ag(1)–N(3a) P(1)–Ag(1)–N(4a) N(3a)–Ag(1)–N(4a)	120.5(1) 144.3(1) 71.3(2)	P(1a)-Ag(1)-N(1) P(1a)-Ag(1)-N(3) N(1)-Ag(1)-N(3)	110.7(2) 155.1(1) 70.0(2)
Symmetry code: compound 1, a y, $x, \frac{1}{2} - z$; compound 2, a $1 - x, -y, -z$.			

[Ag₂(μ-L²)₂(ClO₄)₂] 1. To a solution containing 0.40 g (1 mmol) of L² in CH₃CN (20 mL) was added solid [Ag(Me-CN)₄][ClO₄] (0.37 g, 1 mmol). The resulting solution was stirred at room temperature for 30 min. Subsequent diffusion of diethyl ether into the concentrated solution gave 1 as colorless crystals (yield 0.32 g, 89%). ¹H NMR (CDCl₃): δ 8.31 (d, J = 1.0, 2 H, pyridyl-H⁶), 7.52 (d, J = 1.6, 2 H, pyrazolyl-H³), 7.50 (m, 4 H, pyridyl-H³ and pyridyl-H⁵), 7.13–7.37 (m, 26 H, phenyl, pyridyl-H⁴, *P*-pyridyl-H³ and *P*-pyridyl-H⁵), 6.47 (d, J = 0.7, 2 H, pyrazolyl-H⁴), 6.30 (t, J = 0.4 Hz, 2 H, *P*-pyridyl-H⁴). ³¹P-{¹H} NMR: δ 27.31 (Found: C, 48.75; H, 3.07; N, 9.05. Calc. for C₂₅H₁₉AgClN₄O₄P: C, 48.92; H, 3.12; N, 9.13%).

[Ag₂(μ-L¹)₂(MeCN)₂][ClO₄]₂ 2. The procedure was similar to that above, except for 0.33 g (1 mmol) of L¹ was used instead of L². The product was obtained as colorless crystals (yield 0.46 g, 91%). IR (CH₂Cl₂): v(C=N) 2306.7 cm⁻¹. ¹H NMR (CDCl₃): δ 8.56 (d, J = 0.7, 2 H, pyrazolyl-H³), 8.12 (m, 2 H, pyrazolyl-H⁵), 8.00 (m, 4 H, pyrazolyl-H⁴ and pyridyl-H⁵), 7.28 (m, 20 H, phenyl), 6.99 (m, 2 H, pyridyl-H³), 6.54 (t, J = 1.0 Hz, 2 H, pyridyl-H⁴), 2.02 (s, 6 H, methyl). ³¹P-{¹H} NMR: δ 36.92 (Found: C, 45.70; H, 3.31; N, 9.45. Calc. for C₂₂H₁₉ClAgN₄O₄P: C, 45.74; H, 3.32; N, 9.70%).

Crystal structure determinations

Complex 1. $C_{50}H_{38}Ag_2Cl_2N_8O_8P_2$, M = 1227.5, trigonal, a = 23.173(3), b = 23.173(3), c = 18.795(4) Å, U = 8742(4) Å³, T = 294 K, space group $P\bar{3}_{c1}(no. 165)$, Z = 6, μ (Mo-Ka) = 0.872 mm⁻¹, 5210 reflections measured, 4258 unique ($R_{int} = 0.043$) which were used in all calculations. The final $wR(F^2)$ was 0.088. R1 = 0.058. Rigaku RAXIS IIC imaging-plate diffractometer was used.

Complex 2. $C_{44}H_{38}Ag_2Cl_2N_8O_8P_2$, M = 1155.4, monoclinic, a = 9.663(1), b = 11.557(1), c = 21.344(7) Å, $\beta = 99.88(3)^\circ$, U = 2348.0(9) Å³, T = 294 K, space group $P2_1/c$ (no. 14), Z = 2, μ (Mo-Ka) = 1.077 mm⁻¹, 5409 reflections measured, 3726 unique ($R_{int} = 0.034$) which were used in all calculations. The final $wR(F^2)$ was 0.092. R1 = 0.055. Siemens P4/PC four-circle diffractometer was used.

Selected bond distances and angles are presented in Table 1. CCDC reference number 186/1087.

See http://www.rsc.org/suppdata/dt/1998/2927/ for crystallographic files in .cif format.

Results and discussion

The P,N-polydentate ligands 2-(diphenylphosphino)-6-[3-(2'pyridyl)pyrazol-1-yl]pyridine (L^2) and 2-(diphenylphosphino)-6-(pyrazol-1-yl)pyridine (L^1), which possess rigid, narrow bites, have been synthesized in good yields in two steps. Reaction of Ph₂PLi (prepared "*in situ*" from Ph₂PH and LiBuⁿ) with 2,6dichloropyridine at low temperature gave the mono-substituted product 2-chloro-6-(diphenylphosphino)pyridine, which in turn reacted with potassium 3-(2-pyridyl)pyrazolate or potassium

pyrazolate to furnish the desired phosphine ligands (Scheme 1). The composition of the intermediate 2-chloro-6-(diphenyl-phosphino)pyridine, L^2 and L^1 were all confirmed by elemental analysis, ¹H NMR and ³¹P-{¹H} NMR spectroscopy.

Treatment of L^2 with 1 equivalent of $[Ag(MeCN)_4][ClO_4]$ resulted in the formation of $[Ag_2(\mu-L^2)_2(ClO_4)_2]$ 1, in which the two L^2 ligands are arranged in a head-to-tail configuration and one of the two pyridyl nitrogen atoms in each does not participate in metal co-ordination (Scheme 2).

A perspective view of the binuclear complex 1, which has molecular symmetry 2, is displayed in Fig. 1 with atom numbering. The adopted cyclic structure results from stabilization through π - π stacking of a pair of pyridyl moieties from different phosphine ligands. As anticipated, L² bridges between two metal centers. Each silver(I) center is bound to a pyridylpyrazole unit from one ligand and a phosphorus atom from the other, resulting in the formation of a dimeric M₂L₂ species (Fig. 2). The pseudo-tetrahedral co-ordination sphere of each metal center is completed by a weakly co-ordinated perchlorate ligand

Fig. 1 Perspective view (35% thermal ellipsoids) of the molecular structure of $[Ag_2(\mu-L^2)_2(ClO_4)_2]$ **1** with atom labelling scheme (H atoms have been omitted for clarity). A crystallographic C_2 axis runs vertically and bisects a line joining the silver atoms. Symmetry code: a *y*, *x*, $\frac{1}{2} - z$.

Fig. 2 View of the molecular structure of 1 showing the π - π separation between pyridyl fragments of the pair of co-ordinated L² ligands.

bound through a single O atom. The metal–ligand bond lengths and angles are unremarkable and the non-bonded Ag···Ag distance is 7.630 Å. The inter-ligand π - π stacking interaction distance between the pyridyl units is 3.759 Å, which is a little longer than that (3.380 Å) in {AgL(MeCN)₂]_n}[BF₄]_n (L = 2,7diazapyrene).⁶ The Ag–O distance of 2.625(5) Å is shorter than those [2.762(13)–3.489(12) Å] found in [Ag₃(dppp)₂(MeCN)₂-(ClO₄)₂][ClO₄] [dppp = bis(diphenylphosphinomethyl)phenylphosphine)].⁷

In contrast, reaction of 2-(diphenylphosphino)-6-(pyrazol-1yl)pyridine with 1 equivalent of $[Ag(MeCN)_4][ClO_4]$ resulted in the formation of $[Ag_2(\mu-L^1)_2(MeCN)_2][ClO_4]_2$ 2, in which the two L¹ ligands are in a head-to-tail configuration and the two metal atoms have a weak metal–metal interaction as revealed by X-ray crystallography.

A perspective view of the centrosymmetric binuclear cation of complex **2** is displayed in Fig. 3. Each Ag(I) atom exhibits distorted tetrahedral geometry with ligation by two N atoms from one phosphine ligand and one P atom from the other, and further stabilization was accomplished by the co-ordination of an acetonitrile ligand. The structure is isostructural to $[Cu_2-(\mu-L^1)_2(MeCN)_2][ClO_4]_2$,^{2b} although the two compounds are not isomorphous. The Ag···Ag separation of 2.964(1) Å is much shorter than the Cu···Cu separation [3.625(1) and 3.587(1) Å] in the analogous copper(I) complex, which is an unusual result.

Fig. 3 Perspective view (35% thermal ellipsoids) and atom labelling scheme of the centrosymmetric $[Ag_2(\mu-L^1)_2(MeCN)_2]^{2+}$ cation in **2** (H atoms have been omitted for clarity). Symmetry code: a 1 - x, -y, -z.

This value, however, is in agreement with those [2.943(2)-3.014(2) Å] in $[Ag_3(dppp)_2(MeCN)_2(ClO_4)_2][ClO_4]_7$ but shorter than those found in $\{[Ag_2(MeCN)_2(\mu-L)]_n\}[ClO_4]_{2n}$ [L = 3,6-bis(diphenylphosphino)pyridazine] $[3.005(2), 3.184(2) \text{ Å}],^1$ [Ag $\{HC(PPh_2)_3\}_2Cl][ClO_4]_2$ ·2MeCN $[3.162(1)-3.223(1) \text{ Å}],^8$ and $[Ag_2(dppm)_2(NO_3)_2]$ (3.085 Å),⁹ indicating the possibility of a weak metal-metal interaction in this binuclear complex.

Conclusion

We have taken advantage of the different site-specific ligating behavior of the newly-designed polydentate P,N-ligands L² and L¹ to generate binuclear complexes with [Ag(MeCN)₄]-[ClO₄]. The adopted structure of **1** is favored by significant inter-ligand π - π stacking interactions involving one pyridyl group of L², while a weak metal-metal interaction in **2** is imposed by simultaneous tight binding of L¹ to two metal centers.

Acknowledgements

This work is supported by Hong Kong Research Grants Council Earmarked Grant Ref. No. CUHK 4179/97P.

References

- 1 S.-M. Kuang, Z.-Z. Zhang, Q.-G. Wang and T. C. W. Mak, Chem. Commun., 1998, 581.
- 2 (a) S.-M. Kuang, Z.-Z. Zhang, Q.-G. Wang and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1997, 4477; (b) S.-M. Kuang, Q.-G. Wang, Z.-Z. Zhang and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1998, 1115.
- 3 B. Akermark and A. Vitagliano, Organometallics, 1985, 4, 1281.
- 4 Y. Lin and S. A. Lang, jun., J. Heterocycl. Chem., 1977, 14, 345; A. L. Amoroso, A. M. C. Thompson, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Chem. Commun., 1994, 2751.
- 5 W. C. Wolsey, J. Chem. Educ., 1973, 50, A335; K. N. Raymond, Chem. Eng. News, 1983, 61, 4.
- 6 A. J. Blake, N. R. Champness, A. N. Khlobystov, D. A. Lemenovskii, W.-S. Li and M. Schröder, *Chem. Commun.*, 1997, 1339.
- 7 C.-M. Che, H.-K. Yip, D. Li, S.-M. Peng, G.-H. Lee, Y.-M. Wang and S.-T. Liu, *J. Chem. Soc., Chem. Commun.*, 1991, 1615.
- 8 C.-M. Che, H.-K. Yip. V. W.-W. Yam, P.-Y. Cheung, T.-F. Lai, S.-J. Shieh and S.-M. Peng, J. Chem. Soc., Dalton Trans., 1992, 427.
- 9 D. M. Ho and R. Bau, Inorg. Chem., 1983, 22, 4073.

Received 18th May 1998; Paper 8/03704C